EI network - Hebbian (learned inh.)#

Here we will show the analysis for a single example seed of a network described in Galloni et al. 2025.

import EIANN.EIANN as eiann
from EIANN import utils as ut
eiann.plot.update_plot_defaults()
root_dir = ut.get_project_root()
%load_ext autoreload
%autoreload 2

Hide code cell output

1. Load MNIST data#

train_dataloader, val_dataloader, test_dataloader, data_generator = ut.get_MNIST_dataloaders()

2. Load optimized pre-trained EIANN model:#

EI network trained with Backprop#

network_name = "20241105_EIANN_2_hidden_mnist_Top_Layer_Supervised_Hebb_WeightNorm_config_7_complete_optimized"   
network_seed = 66049
data_seed = 257

If you want to train this network configuration from scratch, you can build a new network object directly from the .yaml configuration file and then train it:

# Create network object
config_file_path = f"../network_config/mnist/{network_name}.yaml"
network = ut.build_EIANN_from_config(config_file_path, network_seed=network_seed)

# Train network
data_generator.manual_seed(data_seed)
network.train(train_dataloader, val_dataloader, 
              epochs = 1,
              samples_per_epoch = 20_000, 
              val_interval = (0, -1, 100), 
              store_history = True,
              store_history_interval = (0, -1, 100), 
              store_dynamics = False, 
              store_params = True,
              status_bar = True)

# Optional: Save network object to pickle file
saved_network_path = root_dir + f"/EIANN/data/mnist/{network_name}_{network_seed}_{data_seed}.pkl"
ut.save_network(spiral_net, path=saved_network_path)

In this case, since we have already trained the network, we will simply load the saved network object that is stored in a pickle (.pkl) file:

saved_network_path = root_dir + f"/EIANN/data/saved_network_pickles/mnist/{network_name}_{network_seed}_{data_seed}.pkl"
network = ut.load_network(saved_network_path)
network.name = network_name
network.seed = f"{network_seed}_{data_seed}"
Loading network from '/Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/mnist/20241105_EIANN_2_hidden_mnist_Top_Layer_Supervised_Hebb_WeightNorm_config_7_complete_optimized_66049_257.pkl'
Network successfully loaded from '/Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/mnist/20241105_EIANN_2_hidden_mnist_Top_Layer_Supervised_Hebb_WeightNorm_config_7_complete_optimized_66049_257.pkl'

3. Training results#

eiann.plot.plot_loss_history(network, ylim=(-0.01, 0.2))
eiann.plot.plot_accuracy_history(network)
eiann.plot.plot_error_history(network)
../_images/199f5e670d812c0a1ac221e7826bd8d6140b4a84191721c3a26ee00206b93b19.png ../_images/7e8b235db98cbe475b98830c3eb3c35ab6561b7c0782ac3534cd468e56856e1c.png ../_images/b03e00615c39ed32e6e23a30b2f97ea3f68c00b134606b1c973d95099a03d32e.png
eiann.plot.plot_loss_landscape(test_dataloader, network, num_points=30, extension=0.8, vmax_scale=1.2, scale='log')
../_images/80bd0fc8a3a49f517fdbbd6147386c7b7ea4778da3f3c8f354d6ab551c4e6829.png

4. Analyze population activities#

eiann.plot.plot_batch_accuracy(network, test_dataloader, population='E')
Batch accuracy = 73.91000366210938%
../_images/29c9ac18999588ffff9c4c29312671598201a95da6d8d1233786ee36856d89d2.png ../_images/11cf3ce95028d8c3634b74e0983db9a73dbbd6a549b6fe8cb8c4043a58ff3473.png ../_images/602d49652ac26979c5829239e641e63bafdef47f8072fdfdc7b2c2b88a43bfff.png
pop_dynamics_dict = ut.compute_test_activity_dynamics(network, test_dataloader, plot=True, normalize=True) # We will evaluate the network dynamics by presenting the test dataset and recording the neuron activity.
print(pop_dynamics_dict['H1E'].shape) # Since we are store the dynamics here, each population should have activity of shape (timesteps, data samples, neurons)
torch.Size([15, 10000, 500])
../_images/c23c7513a8232c365ad56390c72ae37f70cf1b396cf753675f1f6e5a9a930d22.png

5. Analyze learned representations#

pop_activity_dict, pattern_labels, unit_labels_dict = ut.compute_test_activity(network, test_dataloader, class_average=False, sort=True)
pattern_similarity_matrix_dict, neuron_similarity_matrix_dict = ut.compute_representational_similarity_matrix(pop_activity_dict, pattern_labels, unit_labels_dict, population='E', plot=True)
../_images/ff952cb78b4602dd5323ee246904f88d2911f8398ae35fd50de0c1284c332da1.png ../_images/cdf9a2a9a7761ed43bba53ecbe6c9bbba102e44376df05958959e8774632d007.png ../_images/be544ff068f2f02f27d5dbe02fd4bc0d7cee63b24a7cc031331b773a8e9974b6.png
within_class_pattern_similarity_dict, between_class_pattern_similarity_dict, within_class_unit_similarity_dict, between_class_unit_similarity_dict = ut.compute_within_class_representational_similarity(network, test_dataloader, 
                                                                                                                                                                                                         population='E', plot=True)
Plotting pattern similarity for population: H1E
Plotting unit similarity for population: H1E
Plotting pattern similarity for population: H2E
Plotting unit similarity for population: H2E
../_images/3045d7c5048fd1a48e1af9731cf04aa329dffd9e3b88c45c49041602bee99e4f.png

5.3 Output layer#

receptive_fields_output = ut.compute_maxact_receptive_fields(network.Output.E, test_dataloader=test_dataloader, export=True, export_path=root_dir+f"/EIANN/data/model_hdf5_plot_data/plot_data_{network_name}.h5")
eiann.plot.plot_receptive_fields(receptive_fields_output, sort=False)
Loading maxact_receptive_fields_OutputE from file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241105_EIANN_2_hidden_mnist_Top_Layer_Supervised_Hebb_WeightNorm_config_7_complete_optimized.h5
../_images/f37649d9f577d02b0dd65b0d0a864069a291fdab632393c0d9570e60ca1da427.png

5.2 Hidden Layer 2#

receptive_fields_H2 = ut.compute_maxact_receptive_fields(network.H2.E, test_dataloader=test_dataloader, export=True, export_path=root_dir+f"/EIANN/data/model_hdf5_plot_data/plot_data_{network_name}.h5")
eiann.plot.plot_receptive_fields(receptive_fields_H2, sort=True)
Loading maxact_receptive_fields_H2E from file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241105_EIANN_2_hidden_mnist_Top_Layer_Supervised_Hebb_WeightNorm_config_7_complete_optimized.h5
../_images/20862ee1701fa79485cf9e4cfc042d1bb53051fe74a2321683353146f21e7f94.png
population = 'H2E'
average_pop_activity_dict, pattern_labels, unit_labels_dict = ut.compute_test_activity(network, test_dataloader, class_average=True, sort=True)
eiann.plot_receptive_field_similarity(receptive_fields_H2, average_pop_activity_dict[population], unit_labels_dict[population])
../_images/1e7d8e348cc2da9c06de5a06da2e93ebdfe6dc99df53ddac2036b02ada84b54a.png
metrics_dict = ut.compute_representation_metrics(population=network.H1.E, dataloader=test_dataloader, receptive_fields=receptive_fields_H2, plot=True)
../_images/4098d54ff60870c749cbe6ec4f56fb4075a877b4ddd802562c89cfda82725812.png

5.1 Hidden Layer 1#

receptive_fields_H1 = ut.compute_maxact_receptive_fields(network.H1.E, test_dataloader=test_dataloader, export=True, export_path=root_dir+f"/EIANN/data/model_hdf5_plot_data/plot_data_{network_name}.h5")
eiann.plot.plot_receptive_fields(receptive_fields_H1, sort=True)
Loading maxact_receptive_fields_H1E from file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241105_EIANN_2_hidden_mnist_Top_Layer_Supervised_Hebb_WeightNorm_config_7_complete_optimized.h5
../_images/bd369d93085a673f8be3d514c3404ec9c3c8b284b1951b6b84fed5805eefd106.png
metrics_dict = ut.compute_representation_metrics(population=network.H1.E, dataloader=test_dataloader, receptive_fields=receptive_fields_H1, plot=True)
../_images/a2ab7831f600e9b22ef805583b43f532c3a8618e38ca435bb2aa9515df804ac6.png
population = 'H1E'
average_pop_activity_dict, pattern_labels, unit_labels_dict = ut.compute_test_activity(network, test_dataloader, class_average=True, sort=True)
eiann.plot_receptive_field_similarity(receptive_fields_H1, average_pop_activity_dict[population], unit_labels_dict[population])
../_images/d333f2799f5fc3411bf16c5cbcf1b7d13f8a3a7d5a740ce482d9f750555c8467.png