EI network - Dendritic Target Propagation (LDS)#

  • Linear synaptic weight update (LDS)

  • Top-down weight symmetry

Here we will show the analysis for a single example seed of a network described in Galloni et al. 2025.

import EIANN.EIANN as eiann
from EIANN import utils as ut
eiann.plot.update_plot_defaults()
root_dir = ut.get_project_root()
%load_ext autoreload
%autoreload 2

Hide code cell output

1. Load MNIST data#

train_dataloader, val_dataloader, test_dataloader, data_generator = ut.get_MNIST_dataloaders()

2. Load optimized pre-trained EIANN model:#

EI network trained with Backprop#

network_name = "20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized"   
network_seed = 66049
data_seed = 257

If you want to train this network configuration from scratch, you can build a new network object directly from the .yaml configuration file and then train it:

# Create network object
config_file_path = f"../network_config/mnist/{network_name}.yaml"
network = ut.build_EIANN_from_config(config_file_path, network_seed=network_seed)

# Train network
data_generator.manual_seed(data_seed)
network.train(train_dataloader, val_dataloader, 
              epochs = 1,
              samples_per_epoch = 20_000, 
              val_interval = (0, -1, 100), 
              store_history = True,
              store_history_interval = (0, -1, 100), 
              store_dynamics = False, 
              store_params = True,
              status_bar = True)

# Optional: Save network object to pickle file
saved_network_path = root_dir + f"/EIANN/data/mnist/{network_name}_{network_seed}_{data_seed}.pkl"
ut.save_network(spiral_net, path=saved_network_path)

In this case, since we have already trained the network, we will simply load the saved network object that is stored in a pickle (.pkl) file:

saved_network_path = root_dir + f"/EIANN/data/saved_network_pickles/mnist/{network_name}_{network_seed}_{data_seed}.pkl"
network = ut.load_network(saved_network_path)
network.name = network_name
network.seed = f"{network_seed}_{data_seed}"
Loading network from '/Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/mnist/20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized_66049_257.pkl'
Network successfully loaded from '/Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/mnist/20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized_66049_257.pkl'

3. Training results#

eiann.plot.plot_loss_history(network, ylim=(-0.01, 0.2))
eiann.plot.plot_accuracy_history(network)
eiann.plot.plot_error_history(network)
../_images/10309bd3bebe0f071e380e63734b3154979610249bd6b84691d43c7a81c5d8cc.png ../_images/61c1b7feb8e56a8c32f925639bf0157db7ad5c2286c63bd134b3cdc748af0de5.png ../_images/7f1aad1aebaccbd93b301ca1eb393974a22061f9f039c1fe2cd110b88ba6a2a9.png
eiann.plot.plot_loss_landscape(test_dataloader, network, num_points=30, extension=1, vmax_scale=1.2, scale='log')
../_images/b986433d0c28d81b45aff0d58bb82cafe769f7da9fbf05d5b18a8042d0bdc2be.png

4. Analyze population activities#

eiann.plot.plot_batch_accuracy(network, test_dataloader, population='E')
Batch accuracy = 92.80000305175781%
../_images/ee9230e114055f7ecafcee1c33b7adebadfaba13922c97eadc783a8e1e11a92a.png ../_images/d354e11bde6ac3d5e66c19d7188f5472b3e2aad35d9759836315f404f9443671.png ../_images/e58cd6f816f4702ec2cb3747ffdd3d85743b200d72a881e415f808a8621996b4.png
pop_dynamics_dict = ut.compute_test_activity_dynamics(network, test_dataloader, plot=True, normalize=True) # We will evaluate the network dynamics by presenting the test dataset and recording the neuron activity.
print(pop_dynamics_dict['H1E'].shape) # Since we are store the dynamics here, each population should have activity of shape (timesteps, data samples, neurons)
torch.Size([15, 10000, 500])
../_images/2cfb1ad5b4ab68804df115222ec607a4bc51a322dde088b949616cd7b24c10ea.png

5. Analyze learned representations#

pop_activity_dict, pattern_labels, unit_labels_dict = ut.compute_test_activity(network, test_dataloader, class_average=False, sort=True)
pattern_similarity_matrix_dict, neuron_similarity_matrix_dict = ut.compute_representational_similarity_matrix(pop_activity_dict, pattern_labels, unit_labels_dict, population='E', plot=True)
../_images/107ce94d7fb2e87c75a7d133a0ee1ffcfede22447c4c8d0f3233529d4687e4aa.png ../_images/fb985cad649d71fa96a3ad8531ad69d5f1e282d22cdcd835362eac940ec83992.png ../_images/68ee3503caccc4074253f290ed1ae51fb120ca5add9db4567f3d99a5fd16a6ba.png
within_class_pattern_similarity_dict, between_class_pattern_similarity_dict, within_class_unit_similarity_dict, between_class_unit_similarity_dict = ut.compute_within_class_representational_similarity(network, test_dataloader, 
                                                                                                                                                                                                         population='E', plot=True)
Plotting pattern similarity for population: H1E
Plotting unit similarity for population: H1E
Plotting pattern similarity for population: H2E
Plotting unit similarity for population: H2E
../_images/ec4ecfb8f7b0a7d79af447d0229a68705b094b1604ea5bad4ee69be829c2c55f.png

5.3 Output layer#

receptive_fields_output = ut.compute_maxact_receptive_fields(network.Output.E, test_dataloader=test_dataloader, export=True, export_path=root_dir+f"/EIANN/data/model_hdf5_plot_data/plot_data_{network_name}.h5")
eiann.plot.plot_receptive_fields(receptive_fields_output, sort=False)
Loading maxact_receptive_fields_OutputE from file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized.h5
../_images/6cfbd7bd9ac4916abe8eb5f258824522384494fbdae707652fa0225f2ca83142.png

5.2 Hidden Layer 2#

receptive_fields_H2 = ut.compute_maxact_receptive_fields(network.H2.E, test_dataloader=test_dataloader, export=True, export_path=root_dir+f"/EIANN/data/model_hdf5_plot_data/plot_data_{network_name}.h5")
eiann.plot.plot_receptive_fields(receptive_fields_H2, sort=True)
Loading maxact_receptive_fields_H2E from file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized.h5
../_images/4cc40db5d57761a010ab26c00ee02c35bcd73d205e9e4f70224a42042d042996.png
population = 'H2E'
average_pop_activity_dict, pattern_labels, unit_labels_dict = ut.compute_test_activity(network, test_dataloader, class_average=True, sort=True)
eiann.plot_receptive_field_similarity(receptive_fields_H2, average_pop_activity_dict[population], unit_labels_dict[population])
../_images/69ab24957b8eed7f3091b8aaff5cca1ccce5815117f64f977eb8e194941a13bd.png
metrics_dict = ut.compute_representation_metrics(population=network.H1.E, dataloader=test_dataloader, receptive_fields=receptive_fields_H2, plot=True)
../_images/b75f8cdf49a4d5652f5a6524204d6c0bad539a9f3f5571a5e6f7d7f3f604bbaf.png

5.1 Hidden Layer 1#

receptive_fields_H1 = ut.compute_maxact_receptive_fields(network.H1.E, test_dataloader=test_dataloader, export=True, export_path=root_dir+f"/EIANN/data/model_hdf5_plot_data/plot_data_{network_name}.h5")
eiann.plot.plot_receptive_fields(receptive_fields_H1, sort=True)
Loading maxact_receptive_fields_H1E from file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized.h5
../_images/00da3536712b1942a0b01034c12c7d6b9bef0fcb15b75ebe35b84f88c7f4bece.png
metrics_dict = ut.compute_representation_metrics(population=network.H1.E, dataloader=test_dataloader, receptive_fields=receptive_fields_H1, plot=True)
../_images/95d36a6743df57ef360c2ee4488accbae1a3fb435788100e93f67677f8496c59.png
population = 'H1E'
average_pop_activity_dict, pattern_labels, unit_labels_dict = ut.compute_test_activity(network, test_dataloader, class_average=True, sort=True)
eiann.plot_receptive_field_similarity(receptive_fields_H1, average_pop_activity_dict[population], unit_labels_dict[population])
../_images/193980c7a8d30b4434d1278b7fcdcf3a832692df44bbe1a774434351bebe364f.png