EI network - Dend Target Prop (LDS)#

  • Linear synaptic weight update (LDS)

  • Top-down weight symmetry

Here we will show the analysis for a single example seed of a network described in Galloni et al. 2025.

import EIANN as eiann
from EIANN import utils as ut
eiann.update_plot_defaults()
root_dir = ut.get_project_root()

Load MNIST data#

train_dataloader, val_dataloader, test_dataloader, data_generator = ut.get_MNIST_dataloaders()

Load optimized pre-trained EIANN model#

network_name = "20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized"   
network_seed = 66049
data_seed = 257

If you want to train this network configuration from scratch, you can build a new network object directly from the .yaml configuration file and then train it:

# Create network object
config_file_path = f"{root_dir}/EIANN/network_config/mnist/{network_name}.yaml"
network = ut.build_EIANN_from_config(config_file_path, network_seed=network_seed)

# Train network
data_generator.manual_seed(data_seed)
network.train(train_dataloader, val_dataloader, 
              epochs = 1,
              samples_per_epoch = 20_000, 
              val_interval = (0, -1, 100), 
              store_history = True,
              store_history_interval = (0, -1, 100), 
              store_dynamics = False, 
              store_params = True,
              status_bar = True)

# Optional: Save network object to pickle file
saved_network_path = f"{root_dir}/EIANN/data/mnist/{network_name}_{network_seed}_{data_seed}.pkl"
ut.save_network(spiral_net, path=saved_network_path)

In this case, since we have already trained the network, we will simply load the saved network object that is stored in a pickle (.pkl) file:

saved_network_path = f"{root_dir}/EIANN/data/saved_network_pickles/mnist/{network_name}_{network_seed}_{data_seed}.pkl"
network = ut.load_network(saved_network_path)
network.name = network_name
network.seed = f"{network_seed}_{data_seed}"
Loading network from '/Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/saved_network_pickles/mnist/20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized_66049_257.pkl'
Network successfully loaded from '/Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/saved_network_pickles/mnist/20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized_66049_257.pkl'

3. Training results#

eiann.plot_loss_history(network, ylim=(-0.01, 0.2))
eiann.plot_accuracy_history(network)
eiann.plot_error_history(network)
../_images/b50a92e3234efc8fe8f0bc8e8b9b18bcd147bafe6c09111f75b99c1131419f65.png ../_images/6d96fd128f9c21f0da9cbc70f0f439c79d48d20bc26a67f2e444e04528323e6a.png ../_images/342adb781552ff616199246e12d3676d24f6301e94f6d16465e6091a9bca461e.png
eiann.plot_loss_landscape(test_dataloader, network, num_points=30, extension=1, vmax_scale=1.2, scale='log')
../_images/4400e7412ab4c851ab2b2bd2279cd5f841b7d712f1c9547ce9797215f9f78dc5.png

4. Analyze population activities#

eiann.plot_batch_accuracy(network, test_dataloader, population='E')
Batch accuracy = 92.80000305175781%
../_images/2691e5c41c1678e0f55ef2e67e33e9b0f6a548c924a43f8895d42247b71793fb.png ../_images/1b578d777435084c56cb67e4a9aa1d17de2fed65caa39122e179a5cd2ef31166.png ../_images/463fd93a1e61aaf4d43445489a6136ef1a4cfda6154ae11083f0d09f2a23c09e.png
pop_dynamics_dict = ut.compute_test_activity_dynamics(network, test_dataloader, plot=True, normalize=True) # We will evaluate the network dynamics by presenting the test dataset and recording the neuron activity.
print(pop_dynamics_dict['H1E'].shape) # Since we are store the dynamics here, each population should have activity of shape (timesteps, data samples, neurons)
torch.Size([15, 10000, 500])
../_images/5909b572d8554b0a0af3a409544f0c67d9ddb39ce2b0b4193c3f87f686350bd9.png

5. Analyze learned representations#

pop_activity_dict, pattern_labels, unit_labels_dict = ut.compute_test_activity(network, test_dataloader, class_average=False, sort=True)
pattern_similarity_matrix_dict, neuron_similarity_matrix_dict = ut.compute_representational_similarity_matrix(pop_activity_dict, pattern_labels, unit_labels_dict, population='E', plot=True)
../_images/e64175858a46d55f06da099fa1655ad05a43fc269a087ef2ad8c36e1863c4b26.png ../_images/fcd00c622c60e55c689f9c2e5a84fce279ae4f6e74a38024f469f3612fcc3333.png ../_images/c147126fdf5125f176651285da5c22be041a7de576b0212637329f8ad0fc6dd7.png

5.3 Output layer#

receptive_fields_output = ut.compute_maxact_receptive_fields(network.Output.E, test_dataloader=test_dataloader, export=True, export_path=root_dir+f"/EIANN/data/model_hdf5_plot_data/plot_data_{network_name}.h5")
eiann.plot_receptive_fields(receptive_fields_output, sort=False)
Loading maxact_receptive_fields_OutputE from file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized.h5
Data key maxact_receptive_fields_OutputE not found in seed 66049_257 of network 20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized in file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized.h5
Optimizing receptive field images OutputE...
maxact_receptive_fields_OutputE saved to file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized.h5
../_images/6f9e81cc3973a1d71c8b257373557a91aac35d6d5e55884ebfe28f45006c04a0.png

5.2 Hidden Layer 2#

receptive_fields_H2 = ut.compute_maxact_receptive_fields(network.H2.E, test_dataloader=test_dataloader, export=True, export_path=root_dir+f"/EIANN/data/model_hdf5_plot_data/plot_data_{network_name}.h5")
eiann.plot_receptive_fields(receptive_fields_H2, sort=True)
Loading maxact_receptive_fields_H2E from file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized.h5
Data key maxact_receptive_fields_H2E not found in seed 66049_257 of network 20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized in file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized.h5
Optimizing receptive field images H2E...
maxact_receptive_fields_H2E saved to file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized.h5
../_images/0742dc30dd87156edd12e3dfa168860df969d302bc1ddf90823cbc23d0aec12e.png
population = 'H2E'
average_pop_activity_dict, pattern_labels, unit_labels_dict = ut.compute_test_activity(network, test_dataloader, class_average=True, sort=True)
eiann.plot_receptive_field_similarity(receptive_fields_H2, average_pop_activity_dict[population], unit_labels_dict[population])
../_images/24cc2a313fee58b3062900c61d8189c835f5718a13205389cab4a6b273e3b6cb.png
metrics_dict = ut.compute_representation_metrics(population=network.H1.E, dataloader=test_dataloader, receptive_fields=receptive_fields_H2, plot=True)
../_images/ea22176ab43abc8fab180864a3c465db3206a6c339de0b89faa95e96af9d0e6b.png

5.1 Hidden Layer 1#

receptive_fields_H1 = ut.compute_maxact_receptive_fields(network.H1.E, test_dataloader=test_dataloader, export=True, export_path=root_dir+f"/EIANN/data/model_hdf5_plot_data/plot_data_{network_name}.h5")
eiann.plot_receptive_fields(receptive_fields_H1, sort=True)
Loading maxact_receptive_fields_H1E from file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized.h5
Data key maxact_receptive_fields_H1E not found in seed 66049_257 of network 20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized in file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized.h5
Optimizing receptive field images H1E...
maxact_receptive_fields_H1E saved to file: /Users/ag1880/github-repos/Milstein-Lab/EIANN/EIANN/data/model_hdf5_plot_data/plot_data_20241009_EIANN_2_hidden_mnist_BP_like_config_5J_complete_optimized.h5
../_images/ac87446f5b8ca552341efcadb446621cc6fb3f6c822abafc4c56c33a5ffe5f30.png
metrics_dict = ut.compute_representation_metrics(population=network.H1.E, dataloader=test_dataloader, receptive_fields=receptive_fields_H1, plot=True)
../_images/ab04006992504cc902fc8d2de1ae9dc61422e7acf745db242ecbf32a8eb8315b.png
population = 'H1E'
average_pop_activity_dict, pattern_labels, unit_labels_dict = ut.compute_test_activity(network, test_dataloader, class_average=True, sort=True)
eiann.plot_receptive_field_similarity(receptive_fields_H1, average_pop_activity_dict[population], unit_labels_dict[population])
../_images/ea5236b1fed28184666443181b20f176a0599ce95793e2bf6dd478a10c6a5172.png